Improving Strings Support in
Fortran

Presenter: Aman Godara
Thanks to: Sebastian Ehlert and Milan Curcic

Terminologies (for the talk)

e Character Sequence: a sequence of characters; intrinsic

character(len=28) :: char_seq_variable
char_seq_variable = "this is a character sequence"

e String: an instance of type string_type; extrinsic (provided by stdlib)

type(string_type) :: string_variable
string_variable = string_type("this is a character sequence")

e Stringlist: an instance of type stringlist_type; extrinsic (provided in stdlib)

type(stringlist_type) :: stringlist_variable
stringlist_variable = stringlist_type(["char_seq #1", "char_seq #2"])

Immutability of Strings

e [mmutable Data Types: once created CAN’T be modified

e Character Sequences are mutable
o butlength (len) is pre-specified

character(len=28) :: char_seq_variable
char_seq_variable = "this is a character sequence"
char_seq_variable(1:4) = "THIS"

e Strings are immutable; reassign to change value
o same variable can be assigned strings of different lengths

type(string_type) :: string_variable
string_variable

= string_type("character sequence of length 31")
string_variable =

string_type("This character sequence is of length 39")

Advantages of Immutability

type(string_type) :: variable_1, variable_2
| Defined two variables

variable_1 = string_type("This is a char-seq of length 31")
| assigned a value (the initialised string) to variable_1

variable_2 = variable_1
| Assigned the value of variable_1 to variable_2

| Hidden behind ... are some operations involving variable_2 and NO variable_1

| variable_1 being unaffected by these ... operations smiles

* this behaviour can be expressed by Mutable Data Types as well

‘ impure procedure ‘ pure procedure . data

Features of APIs Provided

e pure procedures (functions & subroutines)

o NO effects on any outside data except for input

o pure — elemental ‘
O
input(s) ‘ ‘
\ ~~~~~x~~“~~s~‘

o intent(in) arguments: NO side-effects on input(s)

‘ output (if any)

e functions

Continued ...

e integration with Character Sequences, allocatable/pointer Character Sequences/Strings
type(string_type) :: string_variable

string_variable = "character sequence of length 31"
string_variable = "This character sequence is of length 39"

e highlevel APIs

string_variable = "demo for slice"
sliced_string = slice(string_variable, last=8) I "demo for"
sliced_char_seq = slice("demo for slice", first=8, stride=-1) I "rof omed"
sliced_char_seq = slice("demo for slice", first=8, last=6) | “pof™
e |lowlevel APIs
print *, find("qwqwqwq", pattern="qwqg", occurrence=3, consider_overlapping=.true.) L

I find 3rd occurrence of "qwq" in "qwqwqwq" considering overlapping substrings

Underlying Implementation: allocatable

o more secure

e NO memory leaks

Stringlist (list of Strings)

e adopted philosophy of Strings

e forward and backward indexes through fidx and bidx functions

fidx(1) fidx(5) increases left to right

| | ' >
< | I I

increases right to left bidx(4) bidx(1)

To Know More!

e stdlib_string type: https://stdlib.fortran-lang.org/page/specs/stdlib_string_type

e stdlib_strings: https://stdlib.fortran-lang.org/page/specs/stdlib_strings

e stdlib_stringlist_type: https://stdlib.fortran-lang.org/page/specs/stdlib_stringlist_type

o stdlib_stringlists: under development

e pointervs allocatable in Fortran: https://www.youtube.com/watch?v=hPBGpyX--W8
(Everything Functional)

https://stdlib.fortran-lang.org/page/specs/stdlib_string_type
https://stdlib.fortran-lang.org/page/specs/stdlib_strings
https://stdlib.fortran-lang.org/page/specs/stdlib_stringlist_type
https://www.youtube.com/watch?v=hPBGpyX--W8

